Time periodic traveling wave solutions for periodic advection–reaction–diffusion systems

نویسندگان

  • Guangyu Zhao
  • Shigui Ruan
چکیده

We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a class of periodic advection–reaction–diffusion systems. Under certain conditions, we prove that there exists a maximal wave speed c∗ such that for each wave speed c ≤ c∗, there is a time periodic traveling wave connecting two periodic solutions of the corresponding kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We also show that the traveling wave solutions with wave speed c ≤ c∗ are asymptotically stable in certain sense. In addition, we establish the nonexistence of time periodic traveling waves with speed c > c∗. © 2014 Elsevier Inc. All rights reserved. MSC: 35B10; 35B35; 35B40; 35C07; 35K40

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavetrain Solutions of a Reaction-Diffusion-Advection Model of Mussel-Algae Interaction

We consider a system of coupled partial differential equations modeling the interaction of mussels and algae in advective environments. A key parameter in the equations is the ratio of the diffusion rate of the mussel species and the advection rate of the algal concentration. When advection dominates diffusion, one observes large-amplitude solutions representing bands of mussels propagating slo...

متن کامل

Generalized Traveling Waves in Disordered Media: Existence, Uniqueness, and Stability

We prove existence, uniqueness, and stability of transition fronts (generalized traveling waves) for reaction-diffusion equations in cylindrical domains with general inhomogeneous ignition reactions. We also show uniform convergence of solutions with exponentially decaying initial data to time translates of the front. In the case of stationary ergodic reactions the fronts are proved to propagat...

متن کامل

Traveling Wave Solutions for Bistable Differential-Difference Equations with Periodic Diffusion

We consider traveling wave solutions to spatially discrete reaction-diffusion equations with nonlocal variable diffusion and bistable nonlinearities. To find the traveling wave solutions we introduce an ansatz in which the wave speed depends on the underlying lattice as well as on time. For the case of spatially periodic diffusion we obtain analytic solutions for the traveling wave problem usin...

متن کامل

Periodic Traveling Waves and Locating Oscillating Patterns in Multidimensional Domains

We establish the existence and robustness of layered, time-periodic solutions to a reaction-diffusion equation in a bounded domain in Rn, when the diffusion coefficient is sufficiently small and the reaction term is periodic in time and bistable in the state variable. Our results suggest that these patterned, oscillatory solutions are stable and locally unique. The location of the internal laye...

متن کامل

Periodic Traveling Waves in Integrodifferential Equations for Nonlocal Dispersal

Periodic traveling waves (wavetrains) have been extensively studied for reaction-diffusion equations. One important motivation for this work has been the identification of periodic traveling wave patterns in spatiotemporal data sets in ecology. However, for many ecological populations, diffusion is no more than a rough phenomenological representation of dispersal, and spatial convolution with a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014